Marking Scheme

This document was prepared for markers' reference. It should not be regarded as a set of model answers. Candidates and teachers who were not involved in the marking process are advised to interpret its contents with care.

General Marking Instructions

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks

awarded for the accuracy of the answers:

'A' marks

awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to' and 'f.t.' stands for 'follow through'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.

Paper 1

Solution	Marks	Remarks
$\frac{5}{h+k} = \frac{k}{h-3}$		
5(h-3) = k(h+k)	1M	
$5h - 15 = hk + k^2$		
$5h - hk = 15 + k^2$	IM	for putting h on one side
$h = \frac{15 + k^2}{5 - k}$	1A	or equivalent
5 - K		
$\frac{5}{h+k} = \frac{k}{h-3}$		
$\frac{h+k}{5} = \frac{h-3}{k}$	1M	
h h -3 k	134	for nutting b on one side
$\frac{h}{5} - \frac{h}{k} = \frac{-3}{k} - \frac{k}{5}$	1M	for putting h on one side
$h\left(\frac{1}{5} - \frac{1}{k}\right) = \frac{-3}{k} - \frac{k}{5}$		
$\binom{n}{5}\binom{s}{k}$ $\binom{n}{k}$ $\binom{n}{5}$		
$h\left(\frac{k-5}{5k}\right) = \frac{-15-k^2}{5k}$		
$h = \frac{15 + k^2}{5 - k}$	1A	or equivalent
√ 5 − k	(3)	
$\frac{x^{-8}y}{(x^7y^9)^{-6}}$		
$=\frac{x^{-8}y}{x^{-42}y^{-54}}$	l M	for $(a^h)^k = a^{hk}$ or $(ab)^l = a^l b$
$x^{-42}y^{-24}$,
$=x^{-8-(-42)}y^{1-(-54)}$	1 M	$\int \text{for } \frac{c^p}{c^q} = c^{p-q} \text{ or } d^{-r} = \frac{1}{d^r}$
$=x^{34}y^{55}$	1A	c· a
=x y	(3)	
The least possible total weight of 250 regular packets of cheese	1M+1M	
= (0.22 - 0.005)(250)	INITIM	
= 53.75 kg		
> 53.65 kg Thus, the claim is not correct.	1A	f.t.
Note that 53 600 + 50		
$\frac{35600+30}{250}$	1M+1M	
$= 214.6 \mathrm{g}$		
<215 g		
Thus, the claim is not correct.	1A	f.t.
Note that		
53 600 + 50	1M+1M	
220-5 ≈ 249.5348837		
< 250		
Thus, the claim is not correct.	1A	f.t.
	(3	4
	ŀ	
44	I	1

	Solution	Marks	Remarks
(0)	$3x+2>\frac{4x-5}{2}$		
(a)	$3x+2>{2}$		
	6x + 4 > 4x - 5		
	6x-4x>-5-4	1M	for putting x on one side
	2x > -9		
	$x > \frac{-9}{2}$	1A	x > -4.5
	2	111	
	3x-2 < 7		
	x < 3		
	~ ~ ~		
	Thus, we have $\frac{-9}{2} < x < 3$.		
	Thus, we have $\frac{1}{2} < x < 3$.	1A	
(b)	4	1A	
		(4)	
Int.	and hadka		
	x and y be the number of male passengers and the original number of le passengers on the ferry respectively.		
	= (1+40%)x	h	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	= (1+40%)(y-24)	}1A+1A	
-4- "		3 1	
•		11.6	
So, v	we have $x = 1.4(1.4x - 24)$.	IM	for getting a linear equation in one unkno
So, v Solvi	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$.	IM IA	for getting a linear equation in one unkno
So, v Solvi	we have $x = 1.4(1.4x - 24)$.	i	for getting a linear equation in one unkno
So, v Solvi Thus	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. the number of male passengers on the ferry is 35.	i	for getting a linear equation in one unkno
So, w Solvi Thus	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$.	i	for getting a linear equation in one unknown
So, w Solvi Thus Let :: So, th	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. is, the number of male passengers on the ferry is 35.	IA	
So, we Solving Thus Let $x = 0$	we have $x = 1.4(1.4x - 24)$. sing, we have $x = 35$. so, the number of male passengers on the ferry is 35. x = 35.	1A	for getting a linear equation in one unknown for getting a linear equation in one unknown in one
So, v Solvi Thus Let $x = 0$ So, the $x = 0$ x = 1	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. in, the number of male passengers on the ferry is 35. x be the number of male passengers on the ferry. the original number of female passengers on the ferry is $(1 + 40\%)x$. (1 + 40%)((1 + 40%)x - 24) 1.4(1.4x - 24)	IA IA IM+IA	
So, we solving Thus Let $x = 0$ $x = 1$ Solving So, the solution $x = 0$	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. the number of male passengers on the ferry is 35. The two the number of female passengers on the ferry. the original number of female passengers on the ferry is $(1+40\%)x$. (1+40%)((1+40%)x-24) (1.4(1.4x-24)) ing, we have $x = 35$.	1A	
So, we solve the solve th	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x$. $(1 + 40\%)((1 + 40\%)x - 24)$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$.	IA IA IM+IA	
So, we solve Thus Let $x = 0$ So, the $x = 0$ Thus The solve $x = 0$	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x - (1 + 40\%)((1 + 40\%)x - 24)$. In the number of male passengers on the ferry is $(1 + 40\%)x - 24$. In the number of male passengers on the ferry is $(1 + 40\%)x - 24$. In the number of male passengers on the ferry is $(1 + 40\%)x - 24$. The number of male passengers on the ferry is $(1 + 40\%)x - 24$.	IA IA IM+IA	IM for getting a linear equation in one unkno
So, we solve Thus Let $x = 0$ So, the $x = 0$ Thus The solve $x = 0$	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x - (1 + 40\%)((1 + 40\%)x - 24)$. In the number of male passengers on the ferry is $(1 + 40\%)x - 24$. In the number of male passengers on the ferry is $(1 + 40\%)x - 24$. In the number of male passengers on the ferry is $(1 + 40\%)x - 24$. The number of male passengers on the ferry is $(1 + 40\%)x - 24$.	1A 1A 1M+1A 1A	IM for getting a linear equation in one unkno
So, we solving thus Let: So, the solving thus The solving thus The solving thus	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x$. In the number of female passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry $(1 + 40\%)x$.	1A 1A 1A 1A	IM for getting a linear equation in one unkno
So, we solve Thus Let $x = 0$ So, the $x = 0$ Thus	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x$. In the number of female passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry $(1 + 40\%)x$.	IA IA IM+IA IA IM+IA+IA IA	IM for getting a linear equation in one unknown of the linear equation in our equation in
So, we solving thus Let: So, the solving thus The solving thus The solving thus	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x$. In the number of female passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry $(1 + 40\%)x$.	1A 1A 1A 1A	IM for getting a linear equation in one unknown and the second of the se
So, we solving thus Let: So, the solving thus The solving thus The solving thus	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x$. In the number of female passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry $(1 + 40\%)x$.	IA IA IM+IA IA IM+IA+IA IA	IM for getting a linear equation in one unknown and the second of the se
So, we solving thus Let: So, the solving thus The solving thus The solving thus	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x$. In the number of female passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry $(1 + 40\%)x$.	IA IA IM+IA IA IM+IA+IA IA	IM for getting a linear equation in one unknown and the second of the se
So, we solving thus Let: So, the solving thus The solving thus The solving thus	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x$. In the number of female passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry $(1 + 40\%)x$.	IA IA IM+IA IA IM+IA+IA IA	IM for getting a linear equation in one unknown of the linear equation in our equation in
So, we solve the solve th	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x$. In the number of female passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry $(1 + 40\%)x$.	IA IA IM+IA IA IM+IA+IA IA	IM for getting a linear equation in one unknown of the linear equation in our equation in
So, we solve the solve th	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x$. In the number of female passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry $(1 + 40\%)x$.	IA IA IM+IA IA IM+IA+IA IA	IM for getting a linear equation in one unknown of the linear equation in our equation in
So, we solve the solve th	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x$. In the number of female passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry $(1 + 40\%)x$.	IA IA IM+IA IA IM+IA+IA IA	IM for getting a linear equation in one unknown and the second of the se
So, we solving thus Let: So, the solving thus The solving thus The solving thus	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x$. In the number of female passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry $(1 + 40\%)x$.	IA IA IM+IA IA IM+IA+IA IA	IM for getting a linear equation in one unknown and the second of the se
So, we solving thus Let: So, the solving thus The solving thus The solving thus	we have $x = 1.4(1.4x - 24)$. ing, we have $x = 35$. In the number of male passengers on the ferry is 35 . In the number of male passengers on the ferry. The original number of female passengers on the ferry is $(1 + 40\%)x$. In the number of female passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. In the number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry is $(1 + 40\%)x$. The number of male passengers on the ferry $(1 + 40\%)x$.	IA IA IM+IA IA IM+IA+IA IA	IM for getting a linear equation in one unknown and the second of the se

		Solution	Marks	Remarks
. ((a)	a:b		
		= 6:7		
		4a-3c		
		$\frac{4a-3c}{2b-c}=9$		
		4a - 3c = 18b - 9c	1 1	
		$\frac{24}{7}b - 3c = 18b - 9c$	1M	
		$c = \frac{17}{7}b$		
		•		
		b:c		
		= 7:17		
		a:b:c		
		= 6:7:17	1A	
	(b)	Let $a = 6k$, $b = 7k$ and $c = 17k$, where k is a non-zero constant.		
		5a + 8b		
		$\overline{7b+3c}$		
		$=\frac{5(6k)+8(7k)}{7(7k)+3(17k)}$	1M	
		$=\frac{86}{100}$		
		100		
		$=\frac{43}{50}$	1A	0.86
		30	(4)	

·.	,	vn ng		
•		CRPS CPTQ – ∠PSQ	1M	
		8° – 41°	1174	‡
	= 2			
		VP.OG		
		ARQS ARPS		
	= 2		1A	
	- 2		ļ	
	Not	te that $\angle PQR = 90^{\circ}$.	1M	
	,	LPQS		
		∠PQR – ∠RQS		
		0° - 27°		
	= 6		1A	
			(4))
÷				
		46		

		Solution	Marks	Remarks
8.	(a)	$\angle CAE = \angle DBE$ (alt. $\angle s$, $AC // DB$) $\angle AEC = \angle BED$ (vert. opp. $\angle s$) $\angle ACE = \angle BDE$ ($\angle sum \text{ of } \Delta$) $\Delta ACE \sim \Delta BDE$ (AAA)		(AA) (equiangular)
		Marking Scheme: Case 1 Any correct proof with correct reasons. Case 2 Any correct proof without reasons.	2	
	(b)	$\frac{BE}{BD} = \frac{AE}{AC}$ (by (a)) $\frac{20 - AE}{15} = \frac{AE}{10}$ $AE = 8 \text{ cm}$	1M	
		Note that $AC > AE > CE$. AC^{2} $= 10^{2}$ $= 100$		
		$AE^2 + CE^2$ = $8^2 + 7^2$ = 113 Therefore, we have $AE^2 + CE^2 \neq AC^2$. Hence, $\triangle ACE$ is not a right-angled triangle. By (a), $\triangle BDE$ is not a right-angled triangle.	1M 1A (5)	f.t.
9.	(a)	49 - (20 + a) = 27 $a = 2$	1M	
		The mean = 36	1A	
	4.	The mode = 33	1A	
	(b)	The required probability $= \frac{14}{24}$ $= \frac{7}{12}$	1M 1A (5)	for denominator r.t. 0.583
		47		

			Solution	Marks	Remarks
10.	(a)	Γ	is the perpendicular bisector of AB .	1M (1)	
	(b)	(i)	The slope of Γ = -3		
			The slope of AB $= \frac{1}{3}$		
			•		
			The equation of AB is	13.4	
			$y + 4 = \frac{1}{3}(x - 2)$	1M	
			x-3y-14=0	1A	or equivalent
		(ii)	Note that the centre of the required circle is the point of intersection of AB and Γ . Solving $3x + y - 12 = 0$ and $x - 3y - 14 = 0$, the coordinates of the centre of the required circle are $(5, -3)$.	1M	
			The radius of the required circle $= \sqrt{(2-5)^2 + (-4+3)^2}$	1M	
			$=\sqrt{10}$		
			Thus, the equation of the required circle is $(x-5)^2+(y+3)^2=10$.	1A	$x^2 + y^2 - 10x + 6y + 24 = 0$
			Let (h, k) be the coordinates of B . h-3k-14=0 h=3k+14 Note that the mid-point of AB lies on Γ . $3\left(\frac{2+3k+14}{2}\right)+\frac{-4+k}{2}-12=0$ Solving, we have $k=-2$ and $h=8$. Therefore, the coordinates of B are $(8,-2)$.		
			The coordinates of the centre of the required circle $= \left(\frac{2+8}{2}, \frac{-4-2}{2}\right)$ $= (5, -3)$	1M	
			The radius of the required circle $= \sqrt{(2-5)^2 + (-4+3)^2}$ $= \sqrt{10}$	1M	
			Thus, the equation of the required circle is $(x-5)^2 + (y+3)^2 = 10$.	1A	$x^2 + y^2 - 10x + 6y + 24 = 0$
			48		

		Solution	Marks	Remarks
11.	(a)	$\frac{(1)(8) + (2)(5) + (3)(n) + (4)(1)}{8 + 5 + n + 1} = 2$	1M	
		n = 6 The median		
		= 2	1A	
		The inter-quartile range = 3-1 = 2	lM 1A	
		The variance = 0.9	1A (5)	•
	(b)	Note that the original range is 3. There are two cases.		
		Case 1: Each of the two students owns 2 calculators. The range of the distribution = 3	1M	
		Case 2: One of the two students owns 1 calculator and the other student owns 3 calculators. The range of the distribution = 3		either one
		Thus, there is no change in the range of the distribution due to the withdrawal of the two students.	1A (2)	f.t.
12.	(a)	Let $f(x) = px^2 + q$, where p and q are non-zero constants. So, we have $100p + q = 62$ and $225p + q = 122$.	1M 1M	for either substitution
		Solving, we have $p = \frac{12}{25}$ and $q = 14$.		
		Hence, we have $f(x) = \frac{12}{25}x^2 + 14$.		
		Thus, we have $f(5) = 26$.	1 A (3)	
	(b)	By (a), we have $u = 14$ and $v = 26$. So, we have $UW = 12$ and $VW = 5$. Note that $\angle UWV = 90^{\circ}$.	1M	for either one
		Hence, UV is a diameter of C .	1M	
		The circumference of C $= \pi \sqrt{UW^2 + VW^2}$	1M	
		$= \pi \sqrt{12^2 + 5^2}$		
		$=13\pi$	1A (4)	

		Solution	Marks	Remarks
13. ((a)	Let $mx + n$ be the required quotient, where m and n are constants.	1M	
		Then, we have $h(x) = (mx + n)(x^3 + 5x^2 - 12x - 1) + mx + n$.	I	
		By comparing the coefficients of x^4 , we have $m=3$.	1M	either one
		By comparing the coefficients of x^2 , we have $5n-12m=-16$.		
		So, we have $n = 4$. Thus, the required quotient is $3x + 4$.	1A	
			(3)	
((b)	h(x) = 0		
		$(3x+4)(x^3+5x^2-12x-1)+3x+4=0$ (by (a))		
		$(3x+4)(x^3+5x^2-12x)=0$	1M	for $(px+q)(x^3+5x^2-12x)=0$
		$x(3x+4)(x^2+5x-12) = 0$		
		$x = 0$, $3x + 4 = 0$ or $x^2 + 5x - 12 = 0$	1M	
		$x = 0$, $x = \frac{-4}{3}$ or $x = \frac{-5 \pm \sqrt{73}}{2}$	1M	
		<i>J</i>		
		Note that both $\frac{-5+\sqrt{73}}{2}$ and $\frac{-5-\sqrt{73}}{2}$ are not rational numbers.		
		Also note that both $\frac{-4}{3}$ and 0 are rational roots of $h(x) = 0$.		
		Thus, the equation $h(x) = 0$ has 2 rational roots.	1A	f.t.
		Thus, the equation $H(x) = 0$ has 2 fational roots.	(4)	
14 ((a)	Let l cm be the slant height of the circular cone.	1	
1.4. ((ω)	$\pi(14)(l) = 700\pi$	1M	
		l = 50		
		The height of the circular cone		
		$=\sqrt{l^2-14^2}$	1M	
		$= \sqrt{50^2 - 14^2}$		
		$= \sqrt{30 - 14}$ = 48 cm	1 14	
		- 40 Cm	1A (3	
	/L\	(i) The volume of Y		
'	(b)			
		$= \frac{1}{3}\pi(14^2)(48)\left(1 - \left(\frac{1}{\sqrt{15+1}}\right)^3\right)$	1M+1M	
		$=3.087\pi \text{ cm}^3$	1A	
			"	
		(ii) Let d cm be the diameter of each sphere.		
		$\frac{4}{3}\pi\left(\frac{d}{2}\right)^3 = \frac{3087\pi}{2}$	1M	
		$ \begin{array}{ccc} 3 & (2) & 2 \\ d = 21 \end{array} $	1A	
		Thus, the diameter of each sphere is 21 cm.		
			(5)
		50		
		50	I	1

	Solution	Marks	Remarks
15. (a)	The required probability $= \frac{C_2^5}{C_2^9}$ $= \frac{5}{18}$	1M 1A	for denominator r.t. 0.278
(b)	The required probability $= \frac{5}{18} + \frac{C_1^5 C_1^4 C_3^9 + C_2^4 C_3^8}{C_2^9 C_3^{10}}$ $= \frac{67}{90}$	1M 1A (2)	for (a) + p , where $0r.t. 0.744$
16. (a)	Note that $p+5p=-a$ and $p(5p)=b$. Therefore, we have $6p=-a$ and $5p^2=b$. So, we have $5\left(\frac{-a}{6}\right)^2=b$. Thus, we have $5a^2=36b$.	1M	for either one
(b)	Let t be the x -coordinate of Q . Then, the x -coordinate of R is $5t$. Putting $y = mx$ in $x^2 + y^2 - 6x - 12y + 20 = 0$, we have $x^2 + (mx)^2 - 6x - 12(mx) + 20 = 0$ So, we have $(m^2 + 1)x^2 - (12m + 6)x + 20 = 0$. Therefore, t and $5t$ are the roots of the equation $x^2 - \frac{6(2m+1)}{m^2+1}x + \frac{20}{m^2+1} = 0$ By (a), we have $5\left(\frac{-6(2m+1)}{m^2+1}\right)^2 = 36\left(\frac{20}{m^2+1}\right)$. Simplifying, we have $(2m+1)^2 = 4(m^2+1)$. Therefore, we have $4m = 3$.	1M	
	Solving, we have $m = \frac{3}{4}$.	1A (3	0.75

		Solution	Marks	Remarks
17.	(a)	By sine formula, we have $\frac{\sin \angle XWY}{XY} = \frac{\sin \angle WYX}{WX}$ $\frac{\sin \angle XWY}{5} = \frac{\sin 70^{\circ}}{6}$	1M	
		$\angle XWY \approx 51.54318937^{\circ}$ or $\angle XWY \approx 128.4568106^{\circ}$ (rejected) $\angle XWY \approx 51.5^{\circ}$	1A (2)	r.t. 51.5°
	(b)	Let P be the projection of Z on the triangle WXY . Note that $PW = PX = PY$. Denote the mid-point of XY by M . The angle between the triangles WXY and XYZ is $\angle PMZ$. The centre of the circle which passes through W , X and Y is P .	1M	
		So, we have $\angle MPX = \frac{1}{2} \angle XPY = \angle XWY$. MP $= PX \cos \angle MPX$ $= PW \cos \angle XWY$	1M	
		$\tan \angle PWZ = \frac{PZ}{PW}$	l M	
		$\tan 30^{\circ} = \frac{PZ}{PW}$ $PZ = PW \tan 30^{\circ}$		either one
		$\tan \angle PMZ$ $= \frac{PZ}{MP}$ $= \frac{PW \tan 30^{\circ}}{PW \cos \angle XWY}$ $\tan 30^{\circ}$		
		$\cos \angle XWY$ $\approx \frac{\tan 30^{\circ}}{\cos 51.54318937^{\circ}}$ ≈ 0.928328501 (by (a))		
		Therefore, we have $\tan \angle PMZ < 1$. Hence, we have $\angle PMZ < 45^{\circ}$. Thus, the angle between the triangles WXY and XYZ does not exceed 45°	. 1A	f.t.

	Solution	Marks	Remarks
18. (a	$\frac{\beta}{7} = \frac{7}{\alpha}$	1M	
	$\alpha\beta = 49$		
	$\log_7 \alpha \beta = \log_7 49$		
	$\log_7 \alpha + \log_7 \beta = 2$	1M	
	$\log_7 \alpha = 2 - \log_7 \beta$	1A (3)	
		(3)	
(b	$\log_{\alpha} \beta - \log_{7} \beta = \log_{7} \beta - \log_{\beta} \alpha$	1M	
	$\frac{\log_7 \beta}{\log_7 \alpha} - \log_7 \beta = \log_7 \beta - \frac{\log_7 \alpha}{\log_7 \beta}$	1M	
	Let $u = \log_7 \beta$.		
	$\frac{u}{2-u} - u = u - \frac{2-u}{u}$ (by (a))	1M	for using the result of (a)
	$\frac{u^2 - u}{2 - u} = \frac{u^2 + u - 2}{u}$		
	$\frac{u(u-1)}{2-u} = \frac{u}{u}$		
		:	
	$u^2 = (u+2)(2-u)$ (since $u \neq 1$) $u^2 = 2$		
	$u^- = 2$ $u = \sqrt{2}$ or $u = -\sqrt{2}$ (rejected)		
	$\log_7 \beta = \sqrt{2}$]
	The common difference of the arithmetic sequence = $\log_7 \beta - \log_\beta \alpha$		
	$= \log_7 \beta - \frac{\log_7 \alpha}{\log_7 \beta}$		
	$= \log_7 \beta - \frac{2 - \log_7 \beta}{\log_7 \beta}$		
	$=\sqrt{2}-\frac{2-\sqrt{2}}{\sqrt{2}}$	1M	
	=1	1A	
		(5)	
	62		
	53	ı	1

	Solution	Marks	Remarks
19. (a)	The slope of PQ $= \frac{t-0}{32-50}$ $= \frac{-t}{18}$		
	Note that the x-coordinate of G is 25. The equation of the perpendicular bisector of PR is	1M	
	$y - t = \frac{18}{t}(x - 32)$	1M	
	Putting $x = 25$ in $y - t = \frac{18}{t}(x - 32)$, we have $y = \frac{t^2 - 126}{t}$. Therefore, the coordinates of G are $\left(25, \frac{t^2 - 126}{t}\right)$.	1A	either one
	Also note that the x-coordinate of R is 14. The equation of the straight line which passes through O and is	1M	
	perpendicular to PR is $y = \frac{18}{t}x$.		
	Putting $x = 14$ in $y = \frac{18}{t}x$, we have $y = \frac{252}{t}$.	1A	
	Thus, the coordinates of H are $\left(14, \frac{252}{t}\right)$.	(5)	
(b)	(i) As $\angle PQS = \angle POQ$, we have $\tan \angle PQS = \tan \angle POQ$. $\frac{50-32}{t} = \frac{t}{32}$	1M	for either side
	$\frac{18}{t} = \frac{t}{32}$ $t^2 - 576 = 0$		ior curior side
	Since $t > 0$, we have $t = 24$.	1	
	(ii) By (a), the coordinates of G are $\left(25, \frac{75}{4}\right)$. The coordinates of Q are $(32, 24)$.	1M	for using the result of (a)
	The slope of OG $= \frac{\frac{75}{4} - 0}{25 - 0}$ $= \frac{3}{4}$		
	The slope of OQ $= \frac{24-0}{32-0}$ $= \frac{3}{4}$ Therefore, the slope of OG and the slope of OQ are equal. Thus, O , G and Q are collinear.	1A	f.t.
	Thus, o, o and g are common.		

Since OQ is a median of $\triangle OPR$, Q is the mid-point of PR . Note that G is the circumcentre of $\triangle OPR$. Therefore, we have $GQ \perp PR$. $\angle OQP$ = $180^{\circ} - \angle POQ - \angle OPQ$ = $180^{\circ} - \angle PQS - \angle OPQ$	1M	
$=180^{\circ}-\angle POQ-\angle OPQ$		
$=180^{\circ}-\angle PQS-\angle OPQ$		1 E
$= \angle PSQ$		either one
= 90°		
So, we have $OQ \perp PR$. Hence, we have $GQ // OQ$.		
Thus, O , G and Q are collinear.	1A	f.t.
(iii) Note that OQ is perpendicular to PR and $\triangle OPQ \cong \triangle ORQ$.		
Hence, OQ is the angle bisector of $\angle POR$. Therefore, I lies on OQ .		
Denote the foot of the perpendicular from I to OP by J . Then, we have $\Delta OIJ \sim \Delta OPQ$.		
Let r be the radius of the inscribed circle of $\triangle OPR$.		
So, we have $\frac{OQ-r}{r} = \frac{OP}{PQ}$.	1M	
Since $Q = 40$ and $PQ = 30$, we have $\frac{40 - r}{r} = \frac{50}{30}$.		
Solving, we have $r = 15$. Hence, the coordinates of I are $(20, 15)$.		
Also note that the coordinates of H are $\left(14, \frac{21}{2}\right)$.		
Further note that O , H , I , G and Q are collinear. Since OQ is a median of $\triangle OPR$, we have $PQ = QR$. The required ratio		
$=\frac{1}{2}(GH)(QR):\frac{1}{2}(IQ)(PQ)$		
=GH:IQ	134	
= (25-14): (32-20) = 11:12	1M 1A	
	(7)

Paper 2

Question No.	Key	Question No.	Key
1.	C (78)	26.	B (40)
2.	C (79)	27.	C (51)
3.	A (72)	28.	D (65)
4.	B (87)	29.	C (75)
5.	A (70)	30.	A (84)
6.	D (77)	31.	B (62)
7.	C (82)	32.	D (64)
8.	D (74)	33.	A (39)
9.	A (43)	34.	B (63)
10.	D (67)	35.	D (32)
11.	B (81)	36.	B (40)
12.	D (39)	37.	D (25)
13.	B (66)	38.	C (50)
14.	B (62)	39.	A(31)
15.	A (50)	40.	A (29)
16.	D (27)	41.	C (33)
17.	B (44)	42.	B (45)
18.	A (59)	43.	C (40)
19.	C (54)	44.	D (60)
20.	A (52)	45.	A (47)
. 21.	C (34)		
22.	B (42)		
23.	D (38)		
24.	C (58)		
25.	A (56)		

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.